Domain decomposition method for Maxwell's equations: Scattering off periodic structures

نویسندگان

  • Achim Schädle
  • Lin Zschiedrich
  • Sven Burger
  • Roland Klose
  • Frank Schmidt
چکیده

We present a domain decomposition approach for the computation of the electromagnetic field within periodic structures. We use a Schwarz method with transparent boundary conditions at the interfaces of the domains. Transparent boundary conditions are approximated by the perfectly matched layer method (PML). To cope with Wood anomalies appearing in periodic structures an adaptive strategy to determine optimal PML parameters is developed. We focus on the application to typical EUV lithography line masks. Light propagation within the multi-layer stack of the EUV mask is treated analytically. This results in a drastic reduction of the computational costs and allows for the simulation of next generation lithography masks on a standard personal computer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures

Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...

متن کامل

Periodic structures in integrated optics

Thin-film dielectric waveguides with a periodic refractive index, a periodic substrate, or periodic surface are studied. The field is determined from Maxwell's equations using Floquet's theorem. The Brillouin diagram and the interaction regions are investigated. The bandwidth and the attenuation coefficients of the interaction regions are given as a function of the optical wavelength. A number ...

متن کامل

A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations

This paper presents a new non-overlapping domain decomposition method for the time harmonic Maxwell’s equations, whose effective convergence is quasi-optimal. These improved properties result from a combination of an appropriate choice of transmission conditions and a suitable approximation of the Magnetic-to-Electric operator. A convergence theorem of the algorithm is established and numerical...

متن کامل

Hodge decomposition for divergence-free vector fields and two-dimensional Maxwell's equations

We propose a new numerical approach for two-dimensional Maxwell's equations that is based on the Hodge decomposition for divergence-free vector fields. In this approach an approximate solution for Maxwell's equations can be obtained by solving standard second order scalar elliptic boundary value problems. This new approach is illustrated by a P 1 finite element method.

متن کامل

Accelerated solution of the frequency-domain Maxwell's equations by engineering the eigenvalue distribution of the operator.

We introduce a simple method to accelerate the convergence of iterative solvers of the frequency-domain Maxwell's equations for deep-subwavelength structures. Using the continuity equation, the method eliminates the high multiplicity of near-zero eigenvalues of the operator while leaving the operator nearly positive-definite. The impact of the modified eigenvalue distribution on the accelerated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 226  شماره 

صفحات  -

تاریخ انتشار 2007